Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Duncan M. Tooke,^a* Anthony L. Spek,^a Jan Reedijk^b and Ramu Kannappan^b

^aBijvoet Center for Biomolecular Research, Department of Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and ^bLeiden Institute of Chemistry, Einsteinweg 55, Leiden 2333 AC, The Netherlands

Correspondence e-mail: d.m.tooke@chem.uu.nl

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.002 Å R factor = 0.043 wR factor = 0.097 Data-to-parameter ratio = 15.0

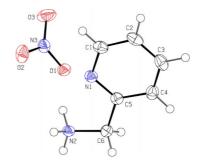
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The single-crystal structure of (2-pyridylmethyl)ammonium nitrate, $C_6H_9N_2^+ \cdot NO_3^-$, is presented, in what is only the third reported structure containing this cation. The structure contains extensively hydrogen-bonded layers.

(2-Pyridylmethyl)ammonium nitrate

Received 21 April 2004 Accepted 26 April 2004 Online 30 April 2004

Comment


During research into novel chelating ligands, the crystal structure of the title compound, (I), was determined (Fig. 1). The structure of the (2-pyridylmethyl)ammonium cation has only been determined twice previously, once in a silver nitrate complex (Sailaja *et al.*, 2001) and once as the pyridine-2-carboxylate salt (Døssing *et al.*, 2001). In both of these structures, four hydrogen bonds were formed from the ammonium group.

In (I), five hydrogen bonds are formed between the ammonium group and nitrate O atoms. These bonds, with D-H···A distances of between 2.8237 (19) and 3.110 (2) Å, are comparable with the bonds reported in the AgNO₃ complex, and cause the formation of a two-dimensional network with the *b* and *c* axes as the base vectors (Fig. 2).

Experimental

2-(Aminomethyl)pyridine (2.16 g, 0.02 mol) was dissolved in ethanol (5 ml) and added to a stirred ethanol solution of *o*-vanillin (3.04 g, 0.02 mol). The reaction mixture was stirred overnight. The solvent was removed using a rotary evaporator to give a red residue, which was recrystallized from the minimum amount of hot methanol, yielding good quality single crystals.

Figure 1

View of the title compound, with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $C_{6}H_{9}N_{2}^{+}NO_{3}^{-}$ $M_{r} = 171.16$ Monoclinic, $P_{2,1}/c$ a = 8.2492 (4) Å b = 10.4014 (5) Å c = 9.3850 (5) Å $\beta = 105.171$ (4)° V = 777.20 (7) Å³ Z = 4 $D_{x} = 1.463$ Mg m⁻³

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: none 18 148 measured reflections 1774 independent reflections 1228 reflections with $I > 2\sigma(I)$

Refinement

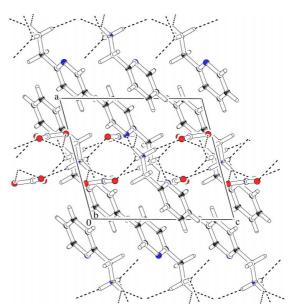
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.097$ S = 1.051774 reflections 118 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O2^{i}$	0.958 (19)	2.155 (18)	2.8817 (19)	131.7 (15)
$N2-H2A\cdots N1^{i}$	0.958 (19)	2.345 (18)	3.037 (2)	128.7 (13)
$N2-H2B\cdots O1^{ii}$	0.925 (18)	1.931 (18)	2.8237 (19)	161.4 (16)
$N2-H2B\cdots O3^{ii}$	0.925 (18)	2.440 (19)	3.110 (2)	129.3 (15)
$N2-H2C\cdots O1$	0.942 (18)	1.923 (18)	2.8412 (18)	164.3 (16)

Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) $x, \frac{1}{2} - y, z - \frac{1}{2}$.


The aromatic H atoms were placed in geometrically idealized positions (C-H = 0.95 Å) and constrained to ride on their parent atoms with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. The H atoms on the N atom were found in a difference electron-density map and refined with $U_{\rm iso} = 1.5 U_{\rm eq}({\rm N})$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DIRAX* (Duisenberg, 1992); data reduction: *EvalCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SHELXS86* (Shel-

Mo $K\alpha$ radiation Cell parameters from 59 reflections, based on $\psi - \chi$ scan (Duisenberg *et al.*, 2000) $\theta = 5.5-20.8^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 150 (2) KBlock, colourless $0.2 \times 0.1 \times 0.1 \text{ mm}$

 $R_{\text{int}} = 0.057$ $\theta_{\text{max}} = 27.4^{\circ}$ $h = -10 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -12 \rightarrow 12$

 $w = 1/[\sigma^2(F_o^2) + (0.0364P)^2 + 0.3509P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.19 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{\text{min}} = -0.23 \text{ e } \text{\AA}^{-3}$

Figure 2

The two-dimensional network structure of (I). Hydrogen bonds are shown as dashed lines.

drick, 1985); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

This work was supported in part (ALS) by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CW–NWO).

References

Døssing, A., Skands, M. C. & Madsen, A. Ø. (2001). Acta Cryst. C57, 1460–1461.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.

Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Sailaja, S., Swarnabala, G. & Rajasekharan, M. V. (2001). Acta Cryst. C57, 1162–1165.

Sheldrick, G. M. (1985). *SHELXS*86. University of Göttingen, Germany. Sheldrick, G. M. (1997). *SHELXL*97. University of Göttingen, Germany. Spek, A. L. (2003). *J. Appl. Cryst.* **36**, 7–13.